

ANEXO I

PEÇAS DO PROJETO BÁSICO 2017.05.05.1

PREFEITURA MUNICIPAL DE VÁRZEA-ALEGRE

LOCAL: BAIRRO DONA ROSINHA - VÁRZEA ALEGRE - CEARÁ

PROP: PREFEITURA MUNICIPAL DE VÁRZEA ALEGRE

Mês de referencia : MARÇO/2017

	ORÇAMENTO RESUMO	
1.0	MACRO - DRENAGEM	R\$ 925.284,15
2.0	ESGOTAMENTO SANITÁRIO	R\$ 518,585,25
101001	TOTAL:	R\$ 1.443.869,40
	Responsável Técnico	
	Empresa	

CICERO EVERIORE LA ARAÚJO SENA ENGENHEIRO CIVIL RNP 0613234774 CREA - CE 53435

PREFEITURA MUNICIPAL DE VÁRZEA ALEGRE - CE

BAIRRO DONA ROSINHA - VÁRZEA ALEGRE - CEARÁ LOCAL: PROP:

PREFEITURA MUNICIPAL DE VÁRZEA ALEGRE

CRONOGRAMA FÍSICO FINANCEIRO - GERAL

ITEM	ESPECIFICAÇÃO	TOTAL	PESO %	%	30 dd	%	60 dd	%	90 dd	%	120 dd
	1 DRENAGEM / TERRAPLANAGEM	740.227,32	64,08%	27,00%	199.861,38	32,00%	236.872,74	28,00%	207.263,65	13,00%	96.229,55
	2 ESGOTAMENTO SANITÁRIO	414.868,20	35,92%	26,86%	111.433,60	40,70%	168.851,36	32,44%	134.583,24		
	TOTAL GERAL	1.155.095,52	100,00%	26,95%	311.294,97	35,12%	405.724,10	29,59%	341.846,89	8,33%	96.229,55
	TOTAL ACUMULADO	1.155.095,52	- M - M -	26,94%	344.782,43	62,07%	717.019,07	91,67%	1.058.865,96	100,00%	1.155.095,51
	TOTAL GERAL COM BDI = 25%	1.443.869,40			430.978,04		896.273,84		1.323.582,45		1.443.869,40

CICERO EVENHUE DE ARAÚJO SENA ENGENHEIRO CIVIL RNP 0613234774 CREA - CE 53435

PREFEITURA MUNICIPAL DE VÁRZEA ALEGRE - CEARÁ SEGUNDA ETAPA DA URBANIZAÇÃO DO BAIRRO RIACHINHO

PROJETO DRENAGEM SEGUNDA ETAPA DO CANAL RIACHINHO

MEMORIAL DESCRITIVO

CICERO EVERTURA: ARAÚJO SENA ENGENHEIRO CIVIL RNP 0613234774 CREA - CE 53435

Fevereiro/2017

CICERO EVELLEN DE ARAÚJO SENA ENGENHEIRO CIVIL RNP 0613234774 CREA - CE 53435

MEMORIAL DESCRITIVO E JUSTIFICATIVO

I-INTRODUÇÃO

II - DRENAGEM

- 1. Metodologia Adotada
- 2. Estudos Básicos
 - 2.1. Estudo Hidrológico
 - 2.2. Estudo Topográfico
- 3. Concepção do Sistema
- 4. Dimensionamento Hidráulico
 - 4.1. Bocas de Lobo
 - 4.2. Canal Retangular em Concreto Armado
 - 4.3. Periodo de Retorno
 - 4.4. Quadro de Dimensionamento

III-TERRAPLENAGEM

- 1. Metodologia Adotada
- 2. Elementos do Projeto

IV - ESPECIFICAÇÕES DE MATERIAIS E SERVIÇOS

- 1. Generalidades
- 2. Terraplenagem
 - 2.1. Generalidades
 - 2.2. Cortes
 - 2.3. Aterro

3. Drenagem

- 3.1. Generalidades dos Serviços
- 3.2. Descrição dos Serviços
- 3.3. Instalação e Trabalhos Preliminares
- 3.4. Escavação e Escoramento
- 3.5. Esgotamento
- 3.6. Construção de Canal Retangular em Concreto Armado
- 3.7. Obras Complementares
- 3.8. Reaterro
- 3.9. Limpeza da Obra

V - ORÇAMENTO

VI – PEÇAS GRÁFICAS

CICERO EVALUS DE ARAÚJO SENA ENGENHEIRO CIVIL RNP 0613234774 CREA - CE 53435

N

CAPÍTULO I

CICERO EVIGUADO ARAÚJO SENA ENGENHEIRO CIVIL RNP 0613234774 CREA - CE 53435

INTRODUÇÃO

MEMORIAL DESCRITIVO E JUSTIFICATIVO

I-APRESENTAÇÃO

A Prefeitura Municipal de Várzea Alegre, através da Secretaria de Infra-Estrutura, vem investindo no desenvolvimento da cidade, a fim de possibilitar um crescimento planejado para a mesma, garantindo uma melhoria contínua na qualidade de vida de seus habitantes, com isso, está beneficiando a população do Bairro Riachinho, com a segunda etapa da Urbanização e da Drenagem do Riacho Riachinho.

O projeto da drenagem mencionada acima, prever boas condições de infra-estrutura, prevendo um eficiente sistema de drenagem para as águas pluviais.

Compõem este trabalho, uma exposição da metodologia adotada, o relato dos estudos básicos, o dimensionamento dos elementos de drenagem e terraplenagem, quadro de quantidades, as especificações de materiais e serviços e as peças gráficas, contendo todos os elementos necessários a execução dos serviços.

CAPÍTULO II

CICERO PRESENT DE ARAÚJO SENA ENGENHEIRO CIVIL RNP 0613234774 CREA - CE 53435

DRENAGEM

II-PROJETO DE DRENAGEM

1. Metodologia Adotada

No desenvolvimento do projeto foram cumpridas as seguintes etapas principais:

- a) Análise da bacia que contribui para a área a ser drenada, utilizando a planta de levantamento topográfico da região e aerofotogrametria da região;
- b) Diagnóstico "in loco" dos problemas existentes, e consequente determinação das áreas a serem drenadas;
- c) Estudo preliminar do traçado da drenagem, através de exame dos divisores d'água, e do projeto geométrico;
- d) A concepção adotada para o estudo de vazão afluente e efluente do açude olho dágua, foi utilizado o método do Hidrograma Unitário Triangular (Soil Conservation Service), para o sistema de macrodrenagem e o Método Racional, para o sistema de microdrenagem na área da urbanização;
- e) Ao longo do canal projetado previsto no partido urbanístico, existe uma canal com seção retangular S=(2,20 x 0,80)m, que encontra-se subdimensionado e que será demolido em toda a sua extensão;
- f) Dimensionamento hidráulico;
- g) Levantamento dos quantitativos.

2. Estudos Básicos

2.1 - Estudo Hidrológico

2.1.1 - Generalidades

As precipitações se constituem na realidade, os insumos básicos para um sistema de drenagem. A partir do seu conhecimento, é que se determinam os escoamentos e consequentemente elaborados os dimensionamentos hidráulicos.

As obras são dimensionadas não em função da vazão máxima absoluta, o que seria antieconômico, mas em função de uma "vazão de projeto" que será uma solução de compromisso entre os possíveis danos causados pela falta de capacidade de escoamento e o custo das obras, assim, proporcionamos uma proteção contra uma dada precipitação que tenha uma probabilidade de ocorrência predeterminada.

ENGENHEIRO CIVIL RNP 0613234774

2.1.2 - Chuvas Intensas

O conhecimento das intensidades das precipitações, para diversas durações de chuva e período de retorno, é dado fundamental para dimensionamento de sistemas de drenagem urbana.

Para definição da chuva de projeto, foi utilizado os dados de chuvas brutos da FUNCEME, na Cidade de Várzea Alegre – Ceará, no período de 1974 a 2007, onde foi coletado as precipitações máximas diárias anuais. No entanto, com posse desses dados, foi utilizado o programa EXVAL, que foram gerados dados estatísticos, onde foi escolhido o modelo probabilístico do Tipo Extremal - I, largamente utilizado para o Nordeste.

2.1.3. Descargas

Para dimensionamento das obras de drenagem, foram determinadas as descargas de projeto utilizando-se o "Método do Hidrograma Unitário Triangular", para o sistema de macrodrenagem e "Método Racional", para o sistema de microdrenagem, largamente empregado para projetos de drenagem urbana, dado pelas seguintes expressões respectivamente:

2.1.3.1. Método do Hidrograma Unitário Triangular

AÇUDE OLHO DÁGUA

• Cálculo do Tempo de Concentração Método Califórnia:

Esta metodologia é utilizada para o calculo dos diversos tempos, para a determinação da vazão de pico da bacia em estudo.

Tempo de Concentração (T_C):

$$t_c = 0.95 \text{ x} \left(\frac{L^3}{H}\right)^{0.385}$$

Utilizando os valores retirados da bacia hidrográfica, tem-se: t_o = 0,60 horas.

• Tempo de Retardarmento (tret):

$$t_{lag} = 0.6 \text{ x } t_c$$

 $t_{lag} = 0.36 \text{ horas.}$

• Intervalos de Tempos (Δt):

$$\Delta t = t_c / 6$$

 $\Delta t = 0.10 \text{ horas}.$

• Tempo de Pico (tp):

$$t_p = \Delta t / 2 + 0.6 \times t_c$$

 $t_p = 0.41 \text{ horas}.$

· Tempo de Base (tb):

$$t_b = 2,67 \text{ x } t_p$$

 $t_b = 1,09 \text{ horas.}$

Vazão de Pico (V_p):

$$V_p = 0.2083 \text{ x A/ } t_p$$

 $V_p = 1.51 \text{ m}^3/\text{ s}.$

PONTO HIDRÁULICO "1" (CANAL PROJETADO)

Cálculo do Tempo de Concentração Método Califórnia:

Esta metodologia é utilizada para o calculo dos diversos tempos, para a determinação da vazão de pico da bacia em estudo.

Tempo de Concentração (Tc):

$$t_c = 0.95 \text{ x} \left(\frac{L^3}{H}\right)^{0.385}$$

Utilizando os valores retirados da bacia hidrográfica, tem-se: $t_c = 0.54$ horas.

• Tempo de Retardarmento (tret.):

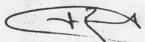
$$t_{lag} = 0.6 \times t_c$$

 $t_{lag} = 0.32 \text{ horas.}$

• Intervalos de Tempos (Δt):

$$\Delta t = t_c / 6$$

 $\Delta t = 0.09$ horas.


• Tempo de Pico (tp):

$$t_p = \Delta t / 2 + 0.6 \times t_c$$

 $t_p = 0.37 \text{ horas}.$

• Tempo de Base (tb):

$$t_b = 2,67 \text{ x } t_p$$

 $t_b = 0,99 \text{ horas}.$

Vazão de Pico (V_p):

$$V_p = 0.2083 \text{ x A/ } t_p$$

 $V_p = 0.73 \text{ m}^3/ \text{ s.}$
2.1.3.2. Método Racional

Para definição das chuvas de projeto, utilizando o método racional, foi usada a equação prevista no Plano Diretor de Drenagem da Região Metropolitana de Fortaleza, desenvolvidas pela Superintendência de Desenvolvimento Urbano do Estado do Ceará - SEDURB, que são as seguintes:

$$i = \frac{528,076T^{0,149}}{(T+6)^{0,62}}$$
 para $t \le 120$ min

Onde: i = intensidade de chuva crítica em mm / min

tc = tempo de concentração, em minutos

T = tempo de retorno em anos

$$i = \frac{54,50T^{0,194}}{(t+1)^{0,86}}$$
 para $t > 2$ horas

Onde: i = intensidade em mm/h

t = duração em horas

T = tempo de retorno em anos.

Para dimensionamento das obras de microdrenagem foram determinadas as descargas de projeto utilizando-se o "Método Racional" largamente empregado para projetos de drenagem urbana, dada pela seguinte expressão:

Q=CiA

onde: C = coeficiente de escoamento superficial

i = intensidade da chuva crítica

A= área da bacia que contribui para a seção considerada

Levando-se em conta que para a adoção correta do referido método, as condições de intensidade constante de chuva durante toda a sua duração e homogeneidade em toda área da bacia, deveriam ocorrer o que dificilmente se verificam na prática, consideramos a homogeneidade através de um "coeficiente de dispersão" da chuva, para as áreas maiores que 50ha, dando origem à expressão.

TB

Q=DCiA

onde:

D é o coeficiente de dispersão da chuva e é dado pela expressão do tipo D=A-K sendo A a área da bacia e K um coeficiente igual a (-0,10). Para áreas maiores que 50ha será então utilizado o referido coeficiente, ressaltando-se que serão adotadas as vazões calculadas para área até 50ha sem o uso do coeficiente. Enquanto os valores das vazões calculadas com o coeficiente de dispersão for inferior à vazão calculada com área de 50ha, o valor adotado será constante e igual ao último. Para coeficiente de escoamento superficial "C", utilizou-se o valor 0,60, por considerar uma parte da bacia hidrográfica fora da região urbana.

2.1.4. Calculo da Chuva Intensa Utilizando o Método de José Jaime Taborga Torrico

Para os períodos de retornos de 20 anos, 50 anos e 100 anos, calculou-se a precipitação media para 24 horas, 1 hora e 6 minutos, conforme a seguir:

Precipitação de 1 dia - 24 horas

Posto: FUNCEME 648	P 1dia (mm)	P 24h (mm)
Tr = 20 anos	139,94	153,93
Tr = 50 anos	160,19	176,20
Tr = 100 anos	175,37	192,90

Precipitação 24 horas - 1 hora

Posto: FUNCEME 648	P 24h (mm)	ISOZONA F	P 1h (mm)
Tr = 20 anos	153,93	45,10	69,42
Tr = 50 anos	176,20	44,50	78,40
Tr = 100 anos	192,90	44,10	85,07

Procinitação 1 hora - 6 minutos

Posto: FUNCEME 648	P 1h (mm)	ISOZONA F	P 6min. (mm)
Tr = 20 anos	69,42	13,90	9,65
Tr = 50 anos	78,40	13,90	10,89
Tr = 100 anos	85,07	12,40	10,48

